The role of wall shear stress in the assessment of right ventricle hydraulic workload.
نویسندگان
چکیده
Pulmonary hypertension (PH) is a devastating disease affecting approximately 15-50 people per million, with a higher incidence in women. PH mortality is mostly attributed to right ventricle (RV) failure, which results from RV hypotrophy due to an overburdened hydraulic workload. The objective of this study is to correlate wall shear stress (WSS) with hemodynamic metrics that are generally accepted as clinical indicators of RV workload and are well correlated with disease outcome. Retrospective right heart catheterization data for 20 PH patients were analyzed to derive pulmonary vascular resistance (PVR), arterial compliance (C), and an index of wave reflections (Γ). Patient-specific contrast-enhanced computed tomography chest images were used to reconstruct the individual pulmonary arterial trees up to the seventh generation. Computational fluid dynamics analyses simulating blood flow at peak systole were conducted for each vascular model to calculate WSS distributions on the endothelial surface of the pulmonary arteries. WSS was found to be decreased proportionally with elevated PVR and reduced C. Spatially averaged WSS (SAWSS) was positively correlated with PVR (R (2) = 0.66), C (R (2) = 0.73), and Γ (R (2) = 0.5) and also showed promising preliminary correlations with RV geometric characteristics. Evaluating WSS at random cross sections in the proximal vasculature (main, right, and left pulmonary arteries), the type of data that can be acquired from phase-contrast magnetic resonance imaging, did not reveal the same correlations. In conclusion, we found that WSS has the potential to be a viable and clinically useful noninvasive metric of PH disease progression and RV health. Future work should be focused on evaluating whether SAWSS has prognostic value in the management of PH and whether it can be used as a rapid reactivity assessment tool, which would aid in selection of appropriate therapies.
منابع مشابه
Boundary Shear Stress in a Trapezoidal Channel
This paper focuses on a hydraulic radius separation approach used to calculate the boundary shear stress in terms of bed and wall shear stress proposed in a trapezoidal channel. The average bed and sidewall shear stress in smooth trapezoidal open channels are derived after using Guo & Julien (2005) early equations taking a part of an investigation to cover both rectangular and trapezoidal chann...
متن کاملExperimental Investigation of Rill Creating Hydraulic Conditions in the Marl Rangelands in a Tilting Flume
Generally, the evaluation and assessment of the critical condition of rill formation are useful for a better understanding of soil erosion processes. The inherence characteristics of soils, which have much dynamic variations on the hillslopes and are affected by rill formation, are the soil critical shear stress and soil erodibility factors. This study aims to assess experimental rill incision ...
متن کاملInvestigation of the Bed and Structural Slopes on Bed Shear Stress and Flow Characteristics around an Impermeable Groyne
In this paper, effects of the cross shore and groyne wall slopes on flow parameters around an impermeable groyne were considered using a three-dimensional numerical CFD model (i.e., FLUENT). The k-ε turbulence model was used to evaluate the Reynolds stresses. The model was first applied to a vertical groyne on a flat bed and the model results were compared with the relevant experimental data. T...
متن کاملGross anatomy of the heart in Ostrich (Struthio camelus)
Today, with emphasis on the mechanical heart and heart transplantation from one human to another andone species to another, a knowledge of the anatomy of the bird’s heart could contribute to theseaccomplishments. Eight male adult ostriches were used to study the heart macroscopically. This studyrevealed that the ostrich heart has some different features from the other birds. In the ostrich, fib...
متن کاملShape Effects and Definition of Hydraulic Radius in Manning 's Equation in Open Channel Flow
In the Manning equation the hydraulic radius can be defined as the cross-section dimension of the shape. In pipe flow the bed shear stress is assumed to be uniformly distributed along the wetted perimeter which cannot be true in open channel flow. Hence, three approximation of the true boundary shear-stress distribution are examined and more practical conveyance depth or resistance radius formu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pulmonary circulation
دوره 5 1 شماره
صفحات -
تاریخ انتشار 2015